
Chapter 1

The Analysis of Contingency
Tables: Log-Linear and
Graphical Models

G Tutz - preliminary

Contingency tables or cross-classified data come in various forms, differing in di-
mensions, distributional assumptions, and margins. In general, they may be seen
as a structured way of representing count data. They were already used to repre-
sent data in binary and multinomial regression problems when explanatory variables
were categorical (Chapter ?? and ??). Also count data with categorical explanatory
variables (Chapter ??) may be given in the form of contingency tables.

In this chapter log-linear models are presented that may be seen as regression
models or association models depending on the underlying distribution. Three
types of distributions are considered, the Poisson distribution, the multinomial, and
the product-multinomial distribution. When the underlying distribution is a Poisson
distribution one usually considers regression problems as in Chapter ??. When the
underlying distribution is multinomial or product-multinomial one usually has more
structure in the multinomial response than is considered in the regression problems
in Chapter ?? and ??. In these chapters the response is assumed to be multino-
mial without further structuring whereas in the present chapter the multinomial re-
sponse arises from the consideration of several response variables which together
form a contingency table. Then one wants to analyse the association between these
variables. Log-linear models provide a common tool to investigate the association
structure in terms of independence or conditional independence between variables.
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Several examples of contingency tables have already been given in previous chap-
ters. Two more examples are the following.

Example 1.1: Birth Data
In a survey study several variables have been collected that are linked to the birth process (see
also Boulesteix (2006) ). Table 1.1 shows the data for the variables gender of the child (G,
1:male, 2:female), if membranes did rupture before the beginning of labour (M, 1:yes, 0:no),
if Cesarean section has been applied (C, 1:yes, 0:no) and if birth has been induced (I, 1:yes,
0:no). The association between the four variables is unknown and shall be investigated.

Induced
0 1

Gender Membranes Cesarean

1 0 0 177 45
1 37 18

1 0 104 16
1 9 7

2 0 0 137 53
1 24 12

1 0 74 15
1 8 2

TABLE 1.1: Contingency table for birth data with variables gender (G), membranes (M),
Cesarean section (C) and induced birth (I)

Example 1.2: Leukoplakia
Table 1.2 shows data from a study on leukoplakia, which is a clinical term used to describe

patches of keratosis visible as adherent white patches on the membranes of the oral cavity.
It shows the alcohol intake in grams of alcohol, smoking habits and presence of leukoplakia.
The objective is the analysis of the association between disease and risk factors (data are
taken from Hamerle and Tutz (1980)).

1.1 Types of Contingency Tables
In particular three types of contingency tables and the corresponding scientific ques-
tions will be studied. The first type of contingency table occurs if cell counts are
Poisson-distributed given the configuration of cells. Then the counts itself represent
the response and the categorical variables that determine the cells are the explana-
tory variables. For example, in Table ?? in Chapter ?? the number of firms with
insolvency problems may be considered as the response while year and month rep-
resent the explanatory variables. The total number of insolvent firms is not fixed
beforehand and is itself a realization of a random variable.

In the second type of contingency table a fixed number of subjects is observed
and the cell counts represent the multivariate response given the total number of
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Leukoplakia (A)
yes no

Alcohol Smoker
no yes 26 10

no 8 8
(0g, 40g] yes 38 8

no 43 24
(40g, 80g] yes 4 1

no 14 17
> 80g yes 1 0

no 3 7

TABLE 1.2: Contingency table for oral leukoplakia

observations. The common assumption is that cell counts have multinomial distri-
bution. Contingency tables of this types occur if a fixed number of individuals is
cross-classified with respect to variables like gender and preference for distinct po-
litical parties (see Table ?? in Chapter ??. The analysis for this type of contingency
table may focus on the association between gender and preference for parties. Alter-
natively, one might be interested in modelling the preference as the response given
gender as explanatory variable.

The third type of contingency tables is found for example in clinical trials. Table
?? shows cross-classified data which have been collected by randomly allocating pa-
tients to one of two groups, a treatment group and a group where a placebo is given.
After ten days of treatment the pain occuring during movement of the knee is as-
sessed on a five point scale. The natural response in this example is the level of pain
given the treatment group. The number of people in the two groups is fixed while
the counts themselves are random variables. The level of pain, given the treatment
group, is a multivariate response, usually modelled by a multinomial distribution.

In general, two-way (I×J)-contingency tables with I rows and J columns may
be described by

Xij = counts in cell (i, j),
XA ∈ {1, . . . , I} representing the rows,
XB ∈ {1, . . . , J} representing the columns.

The observed contingency table has the form

XB

1 2 . . . J
1 X11 X12 . . . X1J X1+

2 X21
. . .

...
...

XA ...
...

. . .
...

I XI1 . . . XIJ XI+

X+1 . . . X+J
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where Xi+ =
∑J

j=1 Xij , X+j =
∑

i=1 Xij denote the marginal counts. The sub-
script ” + ” denotes the sum over that index.

The three types of contingency tables may be distinguished by the distribution
that is assumed.

Type 1: Poisson distribution (Number of insolvent firms)

It is assumed that X11, . . . , XIJ are independent Poisson-distributed random vari-
ables, Xij ∼ P (λij). The total number of counts X11 + · · · + XIJ as well as the
marginal counts are random variables. The natural model considers the counts as
response and XA and XB as explanatory variables.

Type 2: Multinomial distribution (Gender and preference for political parties)

For a fixed number of subjects one observes independently the response tupel (XA, XB)
with possible outcomes {(1, 1), . . . , (I, J)}. The cells of the table represent the
IJ possible outcomes. The resulting cell counts follow a multinomial distribution
(X11, . . . , XIJ) ∼ M(n, (π11, . . . , πIJ)) where πij = P (XA = i,XB = j) de-
notes the probability of a response in cell (i, j). The probabilities {πij}, or in vector
form πT = (π11, . . . πIJ ), represent the joint distribution of XA and XB .

Type 3: Product-multinomial distribution (Treatment and pain)

In contrast to type 2 now one set of marginal counts is fixed. In the treatment
and pain example the row tables are fixed by n1 = X1+, n2 = X2+. Given the
treatment group one observes for each individual the response XB ∈ {1, . . . , J}.
The cell counts for given treatment group i follow a multinomial distribution

(Xi1, . . . , XiJ) ∼ M(ni, (πi1, . . . πiJ)),

where πij now denotes the conditional probability πij = P (XB = j|XA = i). The
cell counts of the total contingency table follow a product-multinomial distribution.
The natural modelling is to consider XB as the response variable and XA as the
explanatory variable. This modelling approach follows directly from the design of
the study. Of course, if the column totals are fixed, the natural response is XA with
XB as the explanatory variable.

Models and Types of Contingency Tables
The three types of contingency tables differ by the way how data are collected.
When considering typical scientific questions, to be investigated by the analysis
of contingency tables, one finds a hierarchy within the types of tables. While the
Poisson distribution is the most general, allowing for various types of analysis, the
product-multinomial contingency table is the most restrictive. The hierarchy is due
to the possible transformations of distributions by conditioning.
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Poisson and Multinomial Distribution
Let Xij , i = 1, . . . , I, j = 1, . . . , J follow independent Poisson distributions, Xij ∼
P (λij). Then the conditional distribution of (X11, . . . , XIJ ) given n =

∑
ij Xij is

multinomial. More concrete, one has

(X11, . . . , XIJ )|
∑

i,j

Xij = n ∼ M(n, (
λ11

λ
, . . . ,

λIJ

λ
)),

where λ =
∑

ij λij . Therefore, given one has Poisson-distributed cell counts, by
conditioning one obtains a structured multinomial distribution which is connected
to the response tupel (XA, XB). Hence, by conditioning on n one may study the
response (XA, XB), its marginal distribution as well as the association between
(XA, XB).

Multinomial and Product-Multinomial Distribution
Let (X11, . . . , XIJ) have multinomial distribution, (X11, . . . , XIJ ) ∼ M(n, (π11, . . . , πIJ)).
By conditioning on the row margins ni+ =

∑
j Xij one obtains the product-multinomial

distribution with probability mass function

f(x11, . . . , xIJ) =
I∏

i=1

ni+!
xi1! . . . xiJ !

πxi1
1|i . . . πxIJ

J|i ,

where πj|i = πij/
∑

j πij = πij/πi+. Thus the cell counts of one row given ni+

have multinomial distribution,

(Xi1, . . . , XiJ) ∼ M(ni+, (π1|i, . . . , πJ|i))

and the I multinomials corresponding to rows are independent.
If the Poisson distribution generates the counts in the table one may consider

the counts given XA and XB within a regression framework; or one may condition
on the total sample size n and model the marginal distribution and the association
of XA and XB based on the multinomial distribution. One may also go one step
further and condition on the marginal counts of the rows (columns) and consider the
regression model where XB (XA) is the response and XA (XB) the explanatory
variable. If the multinomial distribution generates the contingency table one may
consider (XA, XB) as response or choose one of the two variables by conditioning
on the other one. In this sense the Poisson distribution contingency table is the most
versatile. Since the Poisson, multinomial and product-multinomial distribution may
be treated within a general framework, in the following µij = E(Xij) is used
rather than nπij (or niπij) which would be more appropriate for the multinomial
(or product-multinomial) distribution.

In Table 1.3 the types of distributions and the modelling approaches are summa-
rized. Most modelling approaches are regression problem approaches. The associ-
ation between XA and XB may also be considered as a limiting case of regression,
namely without explanatory variables. It should be noted that there are also ap-
proaches to model the dependence of XB on XA if the column marginals are fixed.
However, then special consideration is necessary (see Section?)....
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Poisson Regression (XA, XB) → Counts
distribution

Association between XA and XB (conditional on n)
Regression XA → XB (conditional on Xi+)
Regression XB → XA (conditional on X+j )

Multinomial Association between XA and XB (conditional on n)
distribution

Regression XA → XB (conditional on Xi+)
Regression XB → XA (conditional on X+j )

Product-multinomial
distribution
Xi+ fixed Regression XA → XB

X+j fixed Regression XB → AA

TABLE 1.3: Types of two-way contingency tables and modelling approaches.

1.2 Log-Linear Models for Two-Way Tables
Consider an (I × J)-contingency table {Xij}. Let µij = E(Xij) denote the mean,
where µij = nπij = nP (XA = i,XB = j) for the multinomial distribution,
µij = ni+P (XB = j|XA = i) if one conditions on ni+ =

∑
j Xij , and µij =

n+jP (XA = i|XB = j) if one conditions on n+j =
∑

i Xij . The general log-
linear model for two-way tables has the form

log(µij) = λ0 + λA(i) + λB(j) + λAB(ij) (1.1)

or equivalently
µij = eλ0eλA(i)eλB(j)eλAB(ij) .

Since model (1.1) contains too many parameters, identifiability requires constraints
on the parameters. Two sets of constraints are in common use, the symmetrical
constraints and constraints that use a baseline parameter.

Symmetrical constraints:

I∑

i=1

λA(i) =
J∑

j=1

λB(j) =
I∑

i=1

λAB(ij) =
J∑

j=1

λAB(ij) = 0 for all i, j.

Baseline parameters set to zero:

λA(I) = λB(J) = λAB(iJ) = λAB(Ij) = 0 for all i, j.

The symmetrical constraints are identical to the constraints used in analysis-of-
variance (ANOVA). In ANOVA the dependence of a response variable on cate-
gorical variables, called factors, is studied. In particular one is often interested in
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interaction effects. There is a strong similarity between ANOVA and Poisson con-
tingency tables where the counts represent the response and the categorical variables
XA and XB form the design. The main difference is that ANOVA models assume
normal distribution for the response whereas in log-linear models for count data the
response is integer-valued.

These sets of constraints are closely related to the coding of dummy variables.
Symmetrical constraints refer to effect coding whereas the choice of baseline param-
eters is equivalent to choosing a reference category in dummy coding (see Section
??). Model (1.1) may be also written with dummy variables yielding

log(µij) = λ0 + λA(1)xA(1) + · · ·+ λA(I−1)xA(I−1)

+ λB(1)xB(1) + · · ·+ λB(J−1)xB(J−1)

+ λAB(1,1)xA(1)xB(1) + · · ·+ λAB(I−1,J−1)xA(I−1)xB(J−1),

where xA(1), . . . are dummy variables coding A = i and xB(1), . . . are dummy
variables coding B = j. This form is usually too clumsy and will be avoided.
However, it is easily seen that effect coding of dummy variables is equivalent to the
symmetric constraints and choosing (XA = I,XB = J) as reference categories
in dummy coding is equivalent to using baseline parameters. One should keep in
mind that baseline parameters which refer to reference categories may be chosen
arbitrarily, different software uses different constraints.

The sets of constraints given above apply for Poisson distribution tables. For
multinomial and product-multinomial tables additional constraints are needed to as-
certain that

∑
ij Xij = n (multinomial) and

∑
j Xij = ni+ (product-multinomial,

fixed row sums) holds.

Additional constraint for multinomial tables:
∑

i,j

eλ0eλA(i)eλB(j)eλAB(ij) = n.

Additional constraints for product-multinomial tables:

J∑

j=1

eλ0eλA(i)eλB(j)eλAB(ij) = ni+, i = 1, . . . , I (for ni+ fixed),

I∑

i=1

eλ0eλA(i)eλB(j)eλAB(ij) = n+j , j = 1, . . . , J (for n+j fixed).

Model (1.1) is the most general model for two-way contingency tables, the so-
called saturated model. It is saturated since it represents only a reparameterization
of the means {µij}, any set of means {µij} (µij > 0) may be represented by
parameters λB , λA(i), λB(j), λAB(ij), i = 1, . . . , I, j = 1, . . . , J .
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Log-linear Model for Two-Way Tables

log(µij) = λ0 + λA(i) + λB(j) + λAB(i,j)

Constraints:

I∑

i=1

λA(i) =
J∑

j=1

λB(j) =
I∑

i=1

λAB(ij) =
J∑

j=1

λAB(ij) = 0

or
λA(I) = λB(J) = λAB(iJ) = λAB(Ij) = 0

TABLE 1.4: Log-linear model for two-way tables

Consequently not much insight is gained by considering the saturated log-linear
model. The most important submodel is the log-linear model of independence

log(µij) = λ0 + λA(i) + λB(j), (1.2)

where it is assumed that λAB(ij) = 0. This is no longer a saturated model since it
implies severe restrictions on the underlying regression or association structure. The
restriction has different meanings, depending on the distribution of the cell counts
Xij . For the Poisson distribution it simply means that there is no interaction effect
of variables XA and XB when effecting on the cell counts. For the multinomial
model it is helpful to consider the multiplicative form of (1.2).

µij = nP (XA = i,XB = j) = eλ0eλA(i)eλB(j) . (1.3)

That means that the probability P (XA = i,XB = j) may be written in a multi-
plicative form with factors depending only on XA or XB . Taking constraints into
account, it is easily derived that (1.3) is equivalent to assuming that XA and XB

are independent random variables, or equivalently that P (XA = i,XB = j) =
P (XA = i)P (XB = j) holds. That property gives the model its name.

For the product-multinomial table (row marginals ni+ fixed) one has

µij = ni+P (XB = j|XA = i) = eλ0eλA(i)eλB(j) .

With the constraint
∑

j eλ0eλA(i)eλB(j) = ni+ one obtains

P (XB = j|XA = i) = eλB(j)/
∑

r

eλB(r) ,

which means that the response XB does not depend on variable XA. Thus the model
postulates that the response probabilities are identical across rows

P (XB = j|XA = 1) = . . . = P (XB = j|XA = I),
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which means homogeneity across rows. Considering it is a regression model with
XB as response and XA as explanatory variables, it means that XA has no effect
upon XB . The interpretation of the models is summarized in the following.

• Poisson distribution: No interaction effect of XA and XB on counts.

• Multinomial distribution: XA and XB are independent.

• Product-multinomial distribution: Response XB does not depend on XA

(fixed row marginals), response XA does not depend on XB (fixed column
marginals).

Tests for the nullhypothesis H0 : µAB(ij) = 0 for all i, j have different in-
terpretation. If H0 is not rejected, that means for Poisson distribution tables, that
the interaction term is not significant. For multinomial distribution tables the test
is equivalent to testing the independence between XA and XB . If XA and XB are
random variables and data have been collected as Poisson counts, by conditioning
on XA and XB the interpretation as a test for independence also holds for Poisson
tables (by conditioning on n). Of course, in applications where XA and XB re-
fer to experimental conditions that interpretation is useless. Consider Example ??
in Chapter ?? where the counts of cases of encephalitis are modeled depending on
country and time. These explanatory variables are experimental conditions rather
than random variables and it is futile to try to investigate the independence of these
conditions.

Parameters and Odds Ratio
The parameters of the saturated model (1.1) with symmetric constraints are easily
computed as

λ =
1

IJ

∑

i,j

log(µij), λA(i) =
1
J

∑

j

log(µij)− λ,

λB(j) =
1
I

∑

i

log(µij)− λ, λAB(ij) = log(µij)− λ− λA(i) − λB(j).

The parameters λA(i), λB(j) are the main effects, λAB(ij) is a two-factor interaction.
For multinomial and product-multinomial distribution an independent measure

of association which is strongly linked to two-factor interactions is the odds ratio.
For the simple (2 × 2)-contingency table the odds ratio has the form

γ =
π11/π12

π21/π22
=

P (XA = 1, XB = 1)/P (XA = 1, XB = 2)
P (XA = 2, XB = 1)/P (XA = 2, XB = 2)

=
P (XB = 1|XA = 1)/P (XB = 2|XA = 1)
P (XB = 1|XA = 2)/P (XB = 2|XA = 2)
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By using µij = nπij (multinomial distribution) or µij = ni+πij (product-multinomial,
fixed rows) one obtains for the log-linear model with symmetrical constraints

log(γ) = 4λAB(11),

and for the model with the last category set to zero log(γ) = λAB(11). Thus γ
is a direct function of the two-factor interaction. The connection to independence
is immediately seen: λAB(11) = 0 is equivalent to γ = 1 which means indepen-
dence of variables XA and XB (multinomial distribution) or homogeneity (product-
multinomial distribution).

In the general case of (I × J)-contingency tables one considers the odds ratio
formed by the (2 × 2)-subtable built from rows {i1, i2} and columns {j1, j2} with
cells {(i1, j1), (i1, j2), (i2, j1), (i2, j2)}. The corresponding odds ratio

γ(i1i2)(j1j2) =
πi1j1/πi1j2

πi2j1/πi2j2

may be expressed in two-factor interactions by

log(γ(i1i2)(j1j2)) = λAB(i1j1) + λAB(i2,j2) − λAB(i2j1) − λAB(i1j2).

1.3 Log-linear Models for Three-Way Tables
Three-way tables are characterized by three categorical variables, XA ∈ {1, . . . , I},
XB ∈ {1, . . . , J} and XC ∈ {1, . . . , K} which refer to rows, columns and layers
of the table. Let {Xijk} denote the collection of cell counts where

Xijk denotes the counts in cell (i, j, k),
i.e. the number of observations with XA = i,XB = j,XC = k.

The general form of three-way tables is given in Table 1.5. Throughout the section
the convention is used that the subscript ” + ” denotes the sum over that index, for
example Xij+ =

∑
k Xijk. The types of contingency tables are in principle the

same as for two-way tables. However, now there are more variants of conditioning.

Type 1: Poisson distribution
It is assumed that the Xijk are independent Poisson-distributed random variables,
Xijk ∼ P (λijk). The total number of counts n =

∑
ijk Xijk as well as marginal

counts are random variables. The natural model considers the counts as response
and XA, XB and XC as explanatory variables, which might refer to experimental
conditions or random variables.

Type 2: Multinomial distribution
For a fixed number of subjects one observes the tupel (XA, XB , XC) with possi-
ble outcomes {(1, 1, 1), . . . , (I, J,K)}. The count in cell (i, j, k) is the number of
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XC

XA XB 1 2 · · · K

1 1 X111 X112 · · · X11K X11+

2 X121 X122

...
...

...
J X1J1 · · · X1JK X1J+

2 1 X211 X212 · · · X21K X21+

2 X221 X222

...
...

...
J X2J1 · · · X2JK X2J+

...
...

...
...

...
...

I 1 XI11 XI12 · · · XI1K XI1+

2 XI21 XI22

...
...

...
J XIJ1 · · · XIJK XIJ+

TABLE 1.5: General form of three-way tables

observations with XA = i,XB = j,XC = k. The counts {Xijk} follow a multi-
nomial distribution M(n, {πijk}) where πijk = P (XA = i,XB = j, XC = k).
For three and higher dimensional tables the notation {Xijk} and {πijk} is preferred
over the representation as vectors.

Type 3: Product-multinomial distribution
There are several variants of the product-multinomial distribution. Either one of
the variables (XA or XB or XC) is a design variable, meaning that correspond-
ing marginals are fixed or two of them are design variables, meaning that two-
dimensional margins are fixed. Let us consider as an example of the first variant
the table that results from design variable XA. That means ni++ = Xi++ is fixed
and

(Xi11, . . . , XiJK) ∼ M(ni++, (πi11, . . . , πiJK)), (1.4)

where πijk = P (XB = j, XC = k|XA = i). An example of the second variant
(two design variables) is obtained by letting XA and XB be design variables, i. e.
nij+ = Xij+ is fixed and

(Xij1, . . . , XijK) ∼ M(nij+, (πij1, . . . , πijK)), (1.5)

where πijk = P (XC = k|XA = i,XB = j). Hence, only XC is a response
variable, the number of observations for (XA, XB) = (i, j) are given.
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It should be noted that there is again a hierarchy among distributions. If {Xijk}
have Poisson distribution, conditioning on n = ΣijkXijk yields the multinomial
distribution {Xijk} ∼ M(n, {πijk}) where πijk = λijk/Σijkλijk. Further con-
ditioning on ni++ = ΣjkXijk yields the product of the multinomial distributions
(1.4). If in addition one conditions on nij+ = ΣkXijk one obtains the product of
distributions (1.5).

Log-linear Model for Three-Way Tables

log(µijk) = λ0 + λA(i) + λB(j) + λC(k)

+ λAB(ij) + λAC(ik) + λBC(jk) + λABC(ijk).

Constraints:
∑

i

λA(i) =
∑

j

λB(j) =
∑

k

λC(k) = 0,

∑

i

λAB(ij) =
∑

j

λAB(ij) =
∑

i

λAC(ik) =
∑

k

λAC(ik)

=
∑

j

λBC(jk) =
∑

k

λBC(jk) = 0,

∑

i

λABC(ijk) =
∑

j

λABC(ijk) =
∑

k

λABC(ijk) = 0,

or

λA(I) = λB(J) = λC(K) = 0,

λAB(i,J) = λAB(I,j) = λAC(iK) = λAC(Ik) = λBC(jK)

= λBC(Jk) = 0,

λABC(Ijk) = λABC(iJk) = λABC(ijK) = 0.

TABLE 1.6: Log-linear model for three-way tables with constraints

Let in general µijk = E(Xijk) denote the mean of cell counts. Then the general
form of the three-dimensional log-linear model is

log(µijk) = λ0+λA(i)+λB(j)+λC(k)+λAB(ij)+λAC(ik)+λBC(jk)+λABC(ijk).

For necessary constraints see Table 1.6 where two sets of constraints are given,
the set of symmetric constraints corresponding to ANOVA models and the set of
constraints based on reference categories. For the multinomial and the product-
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multinomial model additional constraints are needed, which are easily derived from
the restrictions n =

∑
ijk Xijk, etc. The model has three types of parameters,

the three-factor interactions λABC(ijk), the two-factor interactions λAB(ij), λAC(ik)

and λBC(jk) and the main effects λA(i), λB(j), λC(k). The general model is satu-
rated, that means it has as many parameters as means µijk and consequently every
data set (without empty cells) yields perfect fit by setting µ̂ijk = Xijk.

More interesting models are derived from the general model by omitting groups
of parameters corresponding to interaction terms. The attractive feature of log-
linear models is that most of the resulting models have an interpretation in terms
of independence or conditional independence. In general, categorical variables
XA, XB , XC are independent, if

P (XA = i, XB = j, XC = k) = P (XA = i)P (XB = j)P (XC = k)

holds for all i, j, k. Conditional independence of XA and XB given XC (in short
XA⊥XB |XC) holds if for all i, j, k

P (XA = i,XB = j|XC = k) = P (XA = i|XC = k)P (XB = j|XC = k).

Hierarchical Models

The interesting class of models that may be interpreted in terms of (conditional) in-
dependence are the hierarchical models. A model is called hierarchical if the model
includes all lower-order terms composed from variables contained in a higher-order
term. For example, if a model contains λBC(jk) it also contains the marginals
λB(j) and λC(k). Hierarchical models may be abbreviated by giving the terms
of highest order. For example the symbol AB/AC denotes the model containing
λAB , λAC , λA, λB , λC (and a constant term). Further examples are given in Table
1.7. The notation is very similar to the Wilkinson-Rogers notation (see...) which for
the model AB/AC is A ∗ B + A ∗ C. The latter form is itself shorthand for the
extended Wilkinson-Rogers notation A.B + A.C + A + B + C.

Graphical Models

Most of the hierarchical log-linear models for three-way tables are also graphical
models which are considered in more detail in Section 1.5. The basic concept is
only sketched here. If a graph is drawn by linking variables for which the two-factor
interaction is contained in the model one obtains a simple graph. If in the resulting
graph there is no connection between groups of variables, these groups of variables
are independent. If two variables are connected only by edges through the third
variable, the two variables are conditionally independent given the third variables.
For examples, see Table 1.7, for a more concise definition of graphical models see
Section 1.5.
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FIGURE 1.1: Hierarchy of three-dimensional log-linear models

1.4 Specific Log-Linear Models
In the following the types of hierarchical models for three-way tables are considered
under the assumption that XA, XB , XC represent random variables (i.e. multino-
mial contingency tables).

Type 0: Saturated Model
The saturated model is given by

log(µijk) = λ0 + λA(i) + λB(j) + λC(k)

+ λAB(i,j) + λAC(ik) + λBC(jk) + λABC(ijk).

It represents a reparameterization of the means {µijk} without implying any addi-
tional structure (except µijk > 0).

Type 1: No three-factor interaction
The model

log(µijk) = λ0 + λA(i) + λB(j) + λC(k) + λAB(ij) + λAC(ik) + λBC(jk)

contains only two-factor interactions and is denoted by AB/AC/BC. Since the
three-factor interaction is omitted the model has to imply restrictions on the under-
lying probabilities. In order to see what the model implies it is useful to look at the
conditional association of two variables given a specific level of the third variable.
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Log-linear Model Regressors of Logit-Model
(with response XC )

AB/AC B
A

C

1, xA

XB , XC conditionally independent, given XA

AB/BC B
A

C

1, xB

XA, XC conditionally independent, given XB

AC/BC B
A

C

1, xA, xB

XA, XB conditionally independent, given XC

A/BC B
A

C

1, xB

XA independent of (XB , XC)

AC/B B
A

C

1, xA

(XA, XC) independent of XB

AB/C B
A

C

1
(XA, XB) independent of XC

A/B/C B
A

C

1
XA, XB , XC are dependent

TABLE 1.7: Graphical models for three-way tables

Let us consider the odds ratios of XA and XB given XC = k and for simplicity
assume that all variables are binary. Then the conditional association measured by
the odds ratio has the form

γ(XA, XB |XC = k) =

P (XA = 1, XB = 1|XC = k)/P (XA = 2, XB = 1|XC = k)
P (XA = 1, XB = 2|XC = k)/P (XA = 2, XB = 2|XC = k)

and is built from the (2 × 2)-table formed by XA and XB for fixed level XC = k.
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By using µijk = nπijk and

γ(XA, XB |XC = k) =
π11k/π21k

π12k/π22k
=

µ11k/µ21k

µ12k/µ22k

one obtains for the model without three-factor interactions that all terms depending
on k cancel out and therefore γ(XA, XB |XC = k) does not depend on k. That
means that the conditional association between XA and XB given XC = k does
not depend on the level k. Whatever the conditional association between these two
variables is, strong or weak or not present, it is the same for all levels of XC , thus
XC does not modify the association between XA and XB . The same holds if XA

and XB have more than two categories where conditional association is measured
by odds ratios of (2 × 2)- subtables built form the total table. Moreover, since the
model is symmetric in the variables it is also implied that the conditional association
between XA and XC given XB = j does not depend on j and the conditional
association between XB and XC given XA = i does not depend on i.

It should be noted that the model without the three-factor interaction does not
imply that two variables are independent of the third variable. There might be a
strong dependence between {XA, XB} and XC although the conditional associa-
tion of XA and XB given XC = k does not depend on the level of XC . The model
is somewhat special since it is the only log-linear model for three-way tables that
is not a graphical model and therefore cannot be represented by a simple graph.
It is also the only model that can not be interpreted in terms of independence or
conditional independence of variables.

Type 2: Only two two-factor interactions contained
A model of this type is the model AC/BC given by

log(µijk) = λ0 + λA(i) + λB(j) + λC(k) + λAC(ik) + λBC(jk).

If the model holds the variables XA and XB are conditionally independent,
given XC , or more formally

P (XA = i,XB = j|XC = k) = P (XA = i|XC = k)P (XB = j|XC = k).

This may be easily derived by using that the model is equivalent to postulating
that µijk = µi+kµ+jk/µ++k. It means that conditionally the variables XA and XB

are not associated. However, that does not mean that there is no marginal associ-
ation between XA and XB . XA and XB may be strongly associated when XC is
ignored. The model is a graphical model with the graph given in Table 1.7. The
graph contains edges between XA and XC as well as between XB and XC but not
between XA and XB . It illustrates that XA and XB have some connection through
the common variable XC . And that is exactly the meaning of the graph: given XC

the variables XA and XB are independent since the connection between XA and
XB is only through XC .

The other two models of this type are AB/AC and AB/BC (shown in Table
1.7). The first postulates that XB and XC are conditionally independent given XA

and the latter postulates that XA and XC are conditionally independent given XB .
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Type 3: Only one two-factor interaction contained
A model of this type is the model A/BC given by

log(µijk) = λ0 + λA(i) + λB(j) + λC(k) + λBC(jk),

which contains only main effects and one two-factor interaction. By simple deriva-
tion one obtains that the model postulates that XA is jointly independent of XB and
XC . That means the groups of variables {A} and {B, C} are independent, or more
formally

P (XA = i,XB = j, XC = k) = P (XA = i)P (XB = j, XC = k).

The model implies stronger restrictions on the underlying probability structure than
the model AC/BC since now in addition the two-factor interaction λAC is omitted.
The corresponding graph in Table 1.7 is very suggestive. There is no edge between
the variable XA and the two variables XB , XC , the two groups of variables are well
separated, corresponding to the interpretation of the model that XA and XB , XC

are independent.

Type 4: Main effects model
The model has the form

log(µijk) = λ0 + λA(i) + λB(j) + λC(k).

The model represents independence of variables XA, XB , XC

P (XA = i,XB = j,XC = k) = P (XA = i)P (XB = j)P (XC = k),

meaning in particular that all the variables are mutually independent.
Figure 1.1 shows the hierarchy of log-linear models. It is obvious that the model

AB/BC is a submodel of AB/BC/AC since the latter is less restrictive than the
former. But not any two models are nested. For example there is no hierarchy
between the models AB/AC and AB/BC. The possible models form a lattice
with semi-ordering.

Table 1.8 shows what restrictions are implied by omitting interaction terms. For
example, the model AB/AC implies that µijk = µij+µi+k/µi++ holds. When the
sampling is multinomial, it is easily derived what that means for conditional proba-
bilities and therefore for the interpretation of the assumed association structure. The
corresponding graphs are given in Table 1.7.

Models for Product-Multinomial Contingency Tables
While all models in Figure 1.1 apply for multinomial contingency tables, not all
models may be built for product-multinomial contingency tables. The cause is that
marginal sums which are fixed by design have to be fitted by the model. In general, if
margins are fixed by design, the corresponding interaction term has to be contained
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AB/AC λABC = λBC = 0 µijk =
µij+µi+k

µi++
P (XB , XC |XA) = P (XB |XA)P (XC |XA)

AB/BC λABC = λAC = 0 µijk =
µ+jkµij+

µ+j+

P (XA, XC |XB) = P (XA|XB)P (XC |XB)

AC/BC λABC = λAB = 0 µijk =
µi+kµ+jk

µ++k

P (XA, XB |XC) = P (XA|XC)P (XB |XC)

A/BC λABC = λAB = λAC = 0 µijk =
µi++µ+jk

µ+++
P (XA, XB , XC) = P (XA)P (XB , XC)

AC/B λABC = λAB = λBC = 0 µijk =
µi+kµ+j+

µ+++
P (XA, XB , XC) = P (XA, XC)P (XB)

AB/C λABC = λAC = λBC = 0 µijk =
µij+µ++k

µ+++
P (XA, XB , XC) = P (XA, XB)P (XC)

A/B/C λABC = λAB = λAC = 0 µijk =
µi++µ+j+µ++k

µ2
+++

λBC = 0 P (XA, XB , XC) = P (XA)P (XB)P (XC)

TABLE 1.8: Graphical models and interpretation for three-way-tables

in the model. For example, if the two dimensional margins Xij+ =
∑

k Xijk are
fixed by design, the model has to contain the interaction λAB . The model AC/BC
is not a valid model since it fits the margins Xi+k and X+jk but does not contain
λAB (see also Lang, 1996a , Bishop, Fienberg, and Holland, 1975 , Agresti, 2002 ).

1.5 Log-Linear and Graphical Models for Higher
Dimensions

Log-linear models for higher dimensions than three have basically the same struc-
ture, but the number of possible interaction terms and the number of possible models
increases. For example in four-way tables a four-factor interaction term can be con-
tained. It is helpful that for hierarchical models the same notation applies as in lower
dimensional models. An example of a four-way model is ABC/AD which is given
by

log(µijkl) = λ0 + λA(i) + λB(j) + λC(k) + λD(l)

+ λAB(ij) + λAC(ik) + λBC(jk) + λAD(il) + λABC(ijk).

The model contains only one three-factor interaction and only four two-factor inter-
action but all main effects. For the interpretation of higher dimensional tables the
representation as graphical models is a helpful tool.
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FIGURE 1.2: Graphs for log-linear model AB/AC (left) and ABC (right)

Graphical Models
In order to obtain models which have simple interpretation in terms of conditional
interpretation it is useful to restrict consideration to subclasses of log-linear mod-
els. We already made the restriction to hierarchical models. A log-linear model is
hierarchical if the model includes all lower-order terms composed from variables
contained in a higher order term. A further restriction is that to graphical models.

A log-linear model is graphical if whenever the model contains all two-factor
interactions generated by a higher-order interaction, the model also contains
the higher-order interaction.

In three-way tables there is only one log-linear model that is not graphical,
namely the model AB/AC/BC. That model contains all two-factors interactions
λAB , λAC , λBC which are generated as marginal parameters of the three-factor
interaction λABC , but λABC itself is not contained in the model.

A graphical model has a graphical representation which makes it easy to see
what types of conditional independence structure is implied. The representation
is based on mathematical graph theory, outlined for example in Whittaker (1990).
and Lauritzen (1996) In general a graph consists of two sets, the sets of vertices,
K, and the set of edges, E. The set of edges consists of pairs of elements from
K, E ⊂ K × K. In graphical log-linear models the vertices correspond to vari-
ables and edges correspond to pairs of variables. Therefore, we will set K to
K = {A, B,C, . . . } and an element from E has the form (A,C). In undirected
graphs, the type of graph that is considered here, if (A,B) is in E, also (B,A) is in
E and the edge or line between A and B is undirected. A chain between vertices
A and C is determined by a sequence of distinct vertices V1, . . . , Vm, Vi ∈ K.
The chain is given by the sequence of edges [AV1/V1V2/ . . . /VmC] for which
(Vi, Vi+1), as well as (AV1), (VmC) are in E. That means a chain represents a se-
quence of variables leading from one variable to another within the graph. Although
A and C may be identical it is not allowed that a vertex between A and C is included
more than once. Therefore circles are avoided. The left graph in Fig.1.2 contains
for example the chains [BA/AC], [CA/AB], [AB], the right graph contains the
chain [AB/BC/CA].

Chains are important for the interpretation of the model. The left graph in Fig.
1.2 corresponds to the model AB/AC, which implies that XB and XC are condi-
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tionally independent given A. If one looks at paths that connect B and C it is seen
that any paths connecting B and C involves A. This property of the graph may be
read as conditional independence of XB and XC given XA.

For the correspondence of graphical log-linear models and graphs it is helpful to
consider the largest sets of vertices that include all possible edges between them. A
set of vertices for which all the vertices are connected by edges is called complete.
The corresponding vertices form a complete subgraph. A complete set that is not
contained in any other complete set is called a maximal complete set or a clique. The
cliques determine the graphical linear model and correspond directly to the notation
defining the model. For example the model AB/AC has the cliques {AB} and
{AC}. The saturated model ABC which contains all possible edges has the max-
imal complete set or clique {ABC}. An example of a higher dimensional model
is the model ABC/AD, which is a graphical model. The model has the cliques
{ABC}, {AD} (see Fig. 1.3 for the graph). Fig 1.3 also shows the graphs for the
saturated model ABCD and the model ABC/ABD/DE.

The strength of graphing log-linear models becomes obvious in higher dimen-
sional tables. The basic tool for the interpretation of graphical log-linear models is
a result by Darroch, Lauritzen, and Speed (1980) :

Let the sets F0, F1, F2 denote disjoint subsets of the variables in a graphical
log-linear model. The factors in F1 are conditionally independent of the fac-
tors in F2 given F0 if and only if every chain between a factor in F1 and a
factor in F2 involves at least one factor in F0. Then F0 is said to separate the
subgraphs formed by F1 and F2.

For the model AB/AC (see graph in Fig. 1.2) one may consider F1 = {B}, F2 =
{C} and F0 = {A}. The conditional independence of XB and XC given XA, in
short XB ⊥ XC |XA, follows directly from the result of Darroch, Lauritzen, and
Speed (1980) . For the model ABC/ABD/DE (see graph in Fig. 1.3) one may
build several subsets of variables. By considering F1 = {A,B, C}, F2 = {E}
and F0 = {D} one obtains that {XA, XB , XC} are conditionally independent of
XE given XD, {XA, XB , XC} ⊥ XE |XD. It is said that XD separates the sub-
graphs formed by {XA, XB , XC} and {XE}. By considering F1 = {B, C}, F2 =
{E}, F0 = {A,D} one obtains that {XB , XC} are conditionally independent of
XE given {XA, XD}. It is seen that for higher dimensional models usually sev-
eral independence structures are involved when considering a graphical log-linear
model.

Marginal independence occurs if there are no chains in the graph that connect
two groups of variables. The graph corresponding to model AB/C (see graph
in Table 1.7) contains no chain between {A,B} and {C}. The implication is
that the variables {XA, XB} are independent of XC , in short {XA, XB} ⊥ XC .
A model may also imply certain marginal independence structures. For exam-
ple the model AB/BC/CD implies conditional independence relations XA ⊥
XD|{XB , XC} and XA ⊥ {XC , XD}|XB , which include all four variables, but
also XA ⊥ XC |XB , which concerns the marginal distribution of XA, XB , XC .
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FIGURE 1.3: Graphs for log-linear models in multi-way tables

As was already seen in three-way tables not all log-linear models are graphical.
That raises the question how to interpret a log-linear model that is not graphical.
Fortunately, any log-linear model can be embedded in a graphical model. For the
interpretation one uses the smallest graphical model that contains the specific model.
Since the specific model is a submodel of that graphical model, all the (conditional)
independence structure of the larger model also has to hold for the specific model.
That strategy does not always work satisfactorily. The smallest graphical model
that contains the three-way table model AB/AC/BC is the saturated model which
implies no independence structure. But the model AB/AC/BC also has no simple
interpretation in terms of conditional independence, although exclusion of the three-
factor interaction restricts the association structure between variables.

1.6 Collapsibility
In general association in marginal tables differs from association structures found
in the full table. For example, XA and XB can be conditionally independent given
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XC = k, even if variables XA and XB are marginally dependent. Marginal de-
pendence means that the association is considered in the marginal table obtained
from collapsing over the categories of the other variables, i.e. the other variables are
ignored (see also Exercise 1.5).

The question arises under which conditions is it possible to infer on the associ-
ation structure from marginal tables. Let us consider a three-way table with means
µijk. The marginal association between binary factors XA and XB , measured in
odds ratios, is determined by

µ11+/µ12+

µ21+/µ22+
,

while the conditional association between XA and XB given XC = k is determined
by

µ11k/µ12k

µ21k/µ22k
.

One can show that the association is the same if model AB/AC holds (compare
Exercise 1.12).

In general the association is unchanged if groups of variables are separated:

Let the sets F1, F2, F0 denote disjoint subsets of the variables in a graphical
log-linear model. If every chain between a factor in F1 and a factor in F2

involves at least one factor in F0 the association among the factors in F1 and
F0 can be examined in the marginal table obtained from collapsing over the
factors in F2. In the same way the association among the factors in F2 and
F0 can be examined in the marginal table obtained from collapsing over the
factors in F1

(compare Darroch, Lauritzen, and Speed (1980) and Bishop, Fienberg, and Holland
(2007)) . Therefore, if F0 separates the subgraphs formed by F1 and F2 one can
collapse over F2 (or F1, respectively). In the model AB/AC, considered previously,
the association between XA and XB as well as the association between XA and XC

can be examined from the corresponding marginal tables.

1.7 Log-Linear Models and the Logit Model
The log-linear models for contingency tables may be represented as logit models.
Let us consider a three-way table with categorical variables XA, XB , XC . The most
general log-linear model is the saturated model

log(µijk) = λ0 + λA(i) + λB(j) + λC(k)

+ λAB(ij) + λAC(ik) + λBC(jk) + λABC(ijk).

For multinomial tables, for which µijk = nπijk, one obtains the logit model with
reference category (XA = I, XB = J,XC = K)

log
(

πijk

µIJK

)
= γA(i) +γB(j) +γC(k) +γAB(ij) +γAC(ik) +γBC(jk) +γABC(ijk),
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where the γ-parameters are obtained as differences, for example γA(i) = λA(i) −
λA(I), γABC(ijk) = λABC(ijk) − λABC(IJK). The parametrization of the model,
which uses reference categories for the variables XA, XB , XC , reflects that a struc-
tured multinomial distribution is given. In contrast to the simple multinomial distri-
butions considered in Chapter ??, the distribution of the response is determined by
three separate variables that structure the multinomial distribution.

Logit Models with Selected Response Variables
Consider now that XC is chosen as response variable. Then one obtains for multi-
nomial tables

log
(

µijr

µijK

)
= log

(
P (XA = i,XB = j, XC = k)
P (XA = i,XB = j,XC = K)

)
= log

(
πr|ij
πK|ij

)
,

where πr|ij = P (XC = r|XA = i,XB = j). By using the saturated model, which
always holds, one obtains from easy derivation the multinomial logit model

log
(

P (XC = r|XA = i,XB = j)
P (XC = K|XA = i,XB = j)

)
= γ0r + γA(i),r + γB(j),r + γAB(ij),r,

where

γ0r = λC(r) − λC(K), γA(i),r = λAC(ir) − λAC(iK),

γB(j),r = λBC(jr) − λBC(jK), γAB(ij),r = λABC(ijr) − λABC(ijK).

An alternative form of the model, which uses dummy variables is

log
(

πr|ij)
πK|ij)

)
= γ0r + γA(1),rxA(1) + · · ·+ γB(1),rxB(1) + · · ·+

γAB(11),rxA(1)xB(1) + · · ·+ γAB(I−1,J−1),rxA(I−1)xB(J−1).

The constraints on the λ parameters and therefore the type of coding of dummy
variables carry over to the γ parameters. For example, the constraint

∑
i λAC(ik) =

0 transforms into
∑

i γA(i),r = 0.
In summary, by choosing one variable as response variable the log-linear model

of association between XA, XB , XC turns into a regression model. If the log-linear
model is a submodel of the saturated model some γ terms are not contained in
the corresponding logit model. For example, by assuming the log-linear model
AB/AC (meaning that XB and XC are conditionally independent) one obtains the
logit model

log
(

P (XC = r|XA=i, XB = j)
P (XC = K|XA = i,XB = j)

)
= γ0r + γA(i),r,

which contains only the explanatory variable XA. Since XB and XC are condition-
ally independent given XA it is quite natural that XB does not effect upon XC since
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it is associated with XC only through XA. In Table 1.7 the explanatory variables
of logit models with response XC are given together with the underlying log-linear
model. It is seen that model AB/BC as well as model A/BC yield a logit model
with XB as the only explanatory variable. Model AB/BC is weaker than A/BC.
Since the effect of variable XA on XC is already omitted if model AB/BC holds,
it is naturally omitted if an even stronger model holds.

1.8 Inference for Log-linear Models
Log-linear models may be embedded into the framework of generalized linear mod-
els. For all three sampling schemes, Poisson distribution, multinomial distribution
and product-multinomial distribution, the response distribution is in the exponential
family. The log-linear model has the form assumed in GLMs where the mean is
linked to the linear predictor by a transformation function. Thus maximum likeli-
hood estimation and testing is based on the methods developed in Chapter ?? and
Chapter ??. An advantage of log-linear models is that maximum likelihood esti-
mates are sometimes easier to compute and that sufficient statistics have a simple
form. In the following the results are shortly stretched.

1.8.1 Maximum Likelihood Estimates and Minimal Sufficient
Statistics

For simplicity the Poisson distribution is considered for three-way models. Let all
the parameters be collected in one parameter vector λ. From the likelihood function

L(λ) =
I∏

i=1

J∏

j=1

K∏

k=1

µ
xijk

ijk

xijk!
e−µijk

one obtains the log-likelihood

l(λ) =
∑

i,j,k

xijk log(µijk)−
∑

i,j,k

µijk −
∑

i,j,k

log(xijk!).

With µijk parameterized as the saturated log-linear model one obtains by rearrang-
ing terms (and omitting constants)

l(λ) = nλ0 +
∑

i

xi++λA(i) +
∑

j

x+j+λB(j) +
∑

k

x++kλC(k)

+
∑

i,j

xij+λAB(ij) +
∑

i,k

xi+kλAC(ik) +
∑

j,k

x+jkλBC(jk)

+
∑

i,j,k

xijkλABC(ijk) −
∑

i,j,k

exp(λ0 + λA(i) + ... + λABC(ijk)).

The form of the log-likelihood remains the same when non-saturated models are
considered. For example, if λABC = 0 the term

∑
i,j,k xijkλABC(ijk) is omitted.
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Since the Poisson is an exponential family distribution the factors on parameters
represent sufficient statistics which contain all the information about parameters.
That means that for non-saturated models the parameter estimates are determined
by marginal sums. For example, the likelihood of the independence model A/B/C
contains only the marginal sums xi++, x+j+, x++k. It is noteworthy that the suffi-
cient statistics which are even minimal statistics correspond directly to the symbol
for the model. Table 1.9 gives the sufficient statistics for the various types of log-
linear models for three-way tables.

As usual maximum likelihood estimates are obtained by setting the derivations
of the log-likelihood equal to zero. The derivative for one of the parameters, say
λAB(ij), is given by

∂l(λ)
∂λAB(ij)

= xij+ −
∑

k

exp(λ0 + λA(i) + . . . ) = xij+ − µij+.

From ∂l(λ)/∂λAB(ij) = 0 one obtains immediately xij+ = µ̂ij+. Hence, com-
putation of maximum likelihood estimates reduces to solving the equations which
equal the sufficient statistics to their expected values. For example for the indepen-
dence model one has to solve the system of equations

xi++ = µ̂i++, x+j+ = µ̂+j+, x++k = µ̂++k, (1.6)

i = 1, . . . , I, j = 1, . . . J, k = 1, . . . ,K.
If the log-linear model is represented in the general vector form

log(µ) = Xλ

with µ containing all the expected cell counts and X denoting the corresponding
design matrix, the likelihood equations, equating sufficient statistics to expected
values, have the form

XT x = XT µ,

where x is the vector of cell counts (for three way tables xT = (x111, x112, . . . , xIJK)).

ABC {xijk}
AB/AC/BC {xij+}, {xi+k}{x+jk}
AB/AC {xij+}, {xi+k}
A/BC {xi++}, {x+jk}
A/B/C {xi++}, {x+j+}, {x++k}

TABLE 1.9: Log-linear models and sufficient statistics for three-way tables

Solving these equations can be very easy. For example, the solution of (1.6) is
directly given by

µ̂ijk = n
xi++

n

x+j+

n

x++k

n
.

The form mimics µijk = nπi++π+j+π++k. For all log-linear models for three-
way tables except AB/AC/BC direct estimates are available. A general class of
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models for which direct estimates exist are decomposable models. A model is called
decomposable if it is graphical and chordal, where chordal means that every closed
chain [AV1/V1V2/ . . . /VmA] (for which starting point end end point are identical)
and which involves at least four distinct edges has a shortcut. A simple exam-
ple is the model AB/BC/CD/AD which is represented by a rectangle. It is not
decomposable since the chain [AB/BC/CD/DA] has no shortcut. It becomes de-
composable by adding one more edge, AC or BD, yielding the model ABC/ACD
or ABD/BCD, respectively. A more extensive treatment of direct estimates was
given for example by Bishop, Fienberg, and Holland (1975) .

If no direct estimates are available, iterative procedures as in GLMs can be used.
An alternative, rather stable procedure that is still used for log-linear models is it-
erative proportional fitting, also called Deming -Stephan algorithm (Deming and
Stephan (1940) ). It iteratively fits the marginals, which for the example of the inde-
pendence model are given in 1.6. It works for direct estimates as well as for models,
for which no direct estimates exist.

For graphical models the density can always be represented in the form

f({xijk}) =
1
z0

∏

Cl

φCl
(xCl

),

where the sum is over the cliques, z0 is a normalizing constant, and φCl
(xCl

) are so-
called clique potentials depending on observations xCl

within the subgraph formed
by Cl. The clique potentials have not to be density functions but contain the de-
pendencies in Cl. Therefore, estimation is based on marginals that are determined
by the cliques (for general algorithms based on the decomposition see for example
Lauritzen (1996) ).

For Poisson sampling the Fisher matrix F (λ̂) has the simple form XT diag(µ)X
yielding the approximation

cov(λ̂) ≈ (XT diag(µ̂)X)−1.

For multionomial sampling one has to separate the intercept, which is fixed by the
sample size. For the corresponding model log(µ) = λ01 + Xγ the Fisher matrix
is XT (diag(µ)− µµT )X yielding the approximation

cov(γ̂) ≈ (XT (diag(µ̂)− µ̂µ̂T )X)−1.

ML estimates for both sampling distributions can be computed within a closed
framework. Let µ =

∑
i µi =

∑
i exp(λ0 + xT

i γ) denote the total expected cell
counts and

πi =
µi∑
j µj

=
exp(λ0 + xT

i γ)∑
j exp(λ0 + xT

j γ)
=

exp(xT
i γ)∑

j exp(xT
j γ)

the relative expected cell counts, which do not depend on λ0. With x =
∑

i xi rep-
resenting the total count one obtains the log-likelihood for the Poisson distribution

l(λ0, γ) =
∑

i

xi log(µi)−
∑

i

µi =
∑

i

xi(λ0+xT
i γ)−µ = xλ0+

∑

i

xi(xT
i γ)−µ.
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By including x log(µ)− x log(µ) one obtains the additive decomposition

l(λ0, γ) = {
∑

i

xi(xT
i γ)− x log(

∑

i

exp(xT
i γ))}+ {x log(µ)− µ}.

The first term is the log-likelihood of a multinomial distribution (x1, x2, . . . ) ∼
M(x, (π1, π2, . . . )), the term x log(µ) − µ is the log-likelihood of a Poison dis-
tribution x ∼ P (µ). Therefore, maximization of the first term, which does not
include the intercept, yields estimates γ̂ for multinomial sampling, conditional on
the number of cell counts x. Maximization of the Poisson log-likelihood yields
µ̂ = x, which determines the estimate of λ0, since µ = c exp(λ0), where c =∑

j exp(xT
j γ) is just a scaling constant determined by maximization of the first

term.
A similar decomposition of the Poisson log-likelihood holds for the product-

multinomial distribution. Computation as well as inference can be based on the
same likelihood with conditioning arguments. For details see Palmgren (1981) ,
Lang (1996b) .

1.8.2 Testing and Goodness-of-fit
Let the cell counts be given by the vector xT = (x1, . . . , xN ) where N is the
number of cells and only a single index is used for denoting the cell. The vector
µ̂ = (µ̂1, . . . , µ̂N ) denotes the corresponding fitted means. For models with an
intercept the deviance has the form

D = 2
N∑

i=1

xi log(
xi

µ̂i
). (1.7)

When considering goodness-of-fit an alternative is Pearson‘s χ2

χ2
P =

N∑

i=1

(xi − µ̂i)2

µ̂i
.

For fixed N , both statistics have approximate χ2-distribution if the assumed model
holds and means µi are large. The degrees of freedom are N − p where p is the
number of estimated parameters.
The degrees of freedom are computed from the general rule

Number of parameters in the saturated model

– Number of parameters in the assumed model.

More concise, the number of parameters is the number of linearly independent pa-
rameters. For example, the restriction

∑
i λA(i) = 0 implies that the effective num-

ber of parameters λA(i), i = 1, . . . , I , is I−1 since λA(I) = −λA(1)−· · ·−λA(I−1).
Let us consider an example for three-way tables. The saturated model has IJK

parameters (corresponding to the cells) for Poisson data, but IJK−1 parameters for
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multinomial data, since the restriction
∑

ijk µijk = 1 applies. For the independence
model the number of parameters is determined by the I − 1 parameters λA(i), the
J − 1 parameters λB(j) and the K − 1 parameters λC(k). For Poisson data one has
an additional intercept yielding the difference

df = IJK − (1 + I − 1 + J − 1 + K − 1) = IJK − I − J −K + 2.

For multinomial data, the restriction
∑

ijk µijk = 1 applies (reducing the number
of parameters by 1) and one obtains

df = {IJK − 1} − {I − 1 + J − 1 + K − 1} = IJK − I − J −K + 2,

which is the same as for Poisson data. In general, the degrees of freedom of the
approximate χ2-distribution are the same for the sampling schemes. For obtaining
asymptotically an χ2- distribution one has to assume

∑
i µi →∞ with µi/µj being

constant for Poisson data and n →∞ for multinomial data and product-multinomial
data, where in the latter case a constant ratio between n and the sampled subpop-
ulation is assumed (for a derivation of the asymptotic distribution see for example
Christensen (1997) , Section 2.3).

The analysis of deviance as given in Section ?? provides test statistics for the
comparison of models. Models are compared by the difference in deviances. If M̃
is a submodel of M one considers

D(M̃ |M) = D(M̃)−D(M). (1.8)

The deviance (1.7) may be seen as the difference between the fitted model and the
saturated model since the deviance of the saturated model, which has perfect fit, is
zero.

A hierarchical submodel is always determined by assuming that part of the pa-
rameters equals zero. For example, the model AB/C assumes that

H0 : λAC(ik) = λBC(jk) = λABC(ijk) = 0 for all i, j, k.

The deviance for the model AB/C may also be seen as a test statistics of null hy-
pothesis H0. When using the difference (1.8) one implicitly tests that the parameters
that are contained in M but not in M̃ are zero, given model M holds.

Example 1.3: Birth Data
In the birth data example (Example 1.1) the variables are gender of the child (G, 1:male, 2:fe-
male), if membranes did rupture before the beginning of labour (M, 1:yes, 0:no), if Cesarean
section has been applied (C, 1:yes, 0:no) and if the birth has been induced (I, 1:yes, 0:no).
The search for an adequate model is started by fitting of models which contain all interaction
terms of a specific order. Let M([m]) denote the model which contains all m-factor interac-
tions. For example M([1]) denotes the main effect model G/M/C/I . From Table 1.10 it is
seen that M([3]), M([2]) fit well but M([1]) should be rejected. Thus one considers models
between M([2]) and M([1]). Starting from M([2]) reduced models are obtained by omit-
ting one of the six two-factor interactions at a time. For example M([2])\GM denotes the
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model which contains all two factor interactions except GM . The difference of deviances,
e.g. for model M([2]) and model M([2])\GM is an indicator of the relevance of the inter-
action GM . It is seen that the interactions MC, CI and MI should not be omitted. The model
G/MC/MI/CI shows satisfying fit while further reduction by omitting G is inappropriate.

The model G/MC/MI/CI is not a graphical model. The smallest graphical model that
contains G/MC/MI/CI is the model G/CMI which is shown in Figure 1.4. It means that
I, C, M are interacting but are independent of gender. The gender of the child seems not to
be connected to the variables membranes, Cesarean section and induced birth.

model dev. df differences diff-df diff-dev p-value

M([4]) 0 0
M([3]) 0.834 1 M([3])-M([4]) 1 0.834 0.361
M([2]) 4.765 5 M([2])-M([3]) 4 3.931 0.415
M([1]) 28.915 11 M([1])-M([2]) 6 24.150 0.000

M([2]\GM) 5.244 6 M([2]\GM) - M([2]) 1 0.478 0.489
M([2]\MC) 9.965 6 M([2]\MC) - M([2]) 1 5.200 0.023
M([2]\CI) 12.167 6 M([2]\CI) - M([2]) 1 7.402 0.007
M([2]\GI) 6.971 6 M([2]\GI) - M([2]) 1 2.206 0.137
M([2]\GC) 6.566 6 M([2]\GC) - M([2]) 1 1.801 0.180
M([2]\MI) 10.100 6 M([2]\MI) - M([2]) 1 5.334 0.021

M(G/MC/MI/CI) 8.910 8 M(G/CI/MI/CI)-M([2]) 3 4.145 0.246
M(MC/MI/CI) 19.428 9 M(CI/MI/CI)-M([2]) 4 14.663 0.005

TABLE 1.10: Deviances and differences for log-linear models for birth data

x

y

1.0 1.2 1.4 1.6 1.8 2.0 2.2

1.
0

1.
5

2.
0

I

G

M

C

FIGURE 1.4: Graphical model for birth data

1.9 Model Selection and Regularization
Model selection is usually guided by the objective of the underlying study. If a spe-
cific association structure is to be investigated the analysis can be reduced to testing
if certain interaction terms can be omitted, which is equivalent to testing the fit of
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the correspondingly reduced model or, more general, a sequence of models. When
no specific hypotheses are to be investigated, model selection aims at a compromise
between two competing goals, sparsity and goodness-of-fit. One wants to find mod-
els that are close to the data but have an economic representation that allows simple
interpretation.

Several model selection procedures for log-linear models were proposed. Some
try to account for the selection error by using multiple testing strategies, others
rely on screening procedures (for references see Section 1.10). More recently, reg-
ularization methods for the selection of log-linear and grahical models have been
developed. The methods are particularly attractive for finding sparse solutions that
fit the data well. In particular in bioinformatics the goal to identify relevant structure
is very ambitious. With thousands of variables in genomics, it is to be seen if selec-
tion strategies are sufficiently reliable. However, the strategies are also useful when
the number of variables is much smaller but too large for the fitting of all possible
models.

A strategy that is strongly related to the regularization methods in Chapter ??
has been given by Dahinden, Parmigiani, Emerick, and Bühlmann (2007). Let
X1, . . . , Xp denote the factors where Xj ∈ {1, . . . , kj} and I = {1, . . . , p} de-
note the index set of factors. By using subsets A ⊂ I to define main and interaction
terms the design matrix of the log-linear log(µ) = Xλ can be decomposed into

X = [XA1 | . . . |XAm ],

where XAj refers to a specific main or interaction term. For example X{1,2} refers
to the interaction terms of variables X1, X2. Correspondingly, let λAj denote the
vector of main or interaction parameters. The penalized log-likelihood, considered
in Chapter ??, has the form lp(β) = l(β) − λ

2 J(β), where l(β) is the usual log-
likelihood, J(β) represents a penalty term and λ is a tuning parameter. Then the
grouped lasso (Section ??) can be applied by using the penalty

J(λ) =
G∑

j=1

√
dfj‖λAj‖2,

where ‖λAj‖2 = (λ2
Aj ,1 + · · ·+λ2

Aj ,dfj
)1/2 is the L2-norm of the parameters of the

jth group of parameters, which comprises dfj parameters. The penalty encourages
sparsity in the sense that either λ̂Aj = 0 or λAj ,s 6= 0 for s = 1, . . . , dfj . If one
has one binary variable X1 and a variable X2 with three categories for example the
interaction term comprises two parameters λ12(11), λ12(12) and the L2-norm of the
parameters is (λ2

12(11) + λ12(12))1/2.
When using the grouped lasso the resulting model will in general be non-hierarchical.

Of course, it is easy to fit the corresponding hierarchical model with all the neces-
sary marginal effects included. However, if one single high order interaction term
is selected the resulting model can be quite complex. Therefore, Dahinden, Parmi-
giani, Emerick, and Bühlmann (2007) proposed to start the selection procedure not
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only from the full model but from all models M([m]), which contains all m factor
interactions. Then the best model is selected.

A strategy that is quite common, is to start from M([2]), which contains all two-
factor interactions. For binary variables Xi ∈ {0, 1}, the approach is usually based
on the Ising model, which assumes that the joint probabilities are given by

P (X1, . . . , Xp) = exp(
∑

(j,k)∈E

θjkXjXk − φ(θ)),

where the normalizing function θ contains the parameters θjk, and the sum is over
the edges E of a graphical model (see for example Ravikumar, Wainwright, and
Lafferty (2009) ). For technical reasons an artificial variable X0 = 1 and edges
between X0 and the variables are included. For log-linear models the Ising model
is equivalent to the multinomial model that contains all two factor interactions. For
the conditional model, conditioned on the other variables, one obtains a main effect
model, which in the parametrization of the Ising model is given by

P (Xj = 1|X1 = x1, . . . , Xp = xp) =
exp(

∑
(j,k)∈E θjkxk)

1 + exp(
∑

(j,k)∈E θjkxk)
.

The model is equivalent to a main effect logit model with response variable Xj

and explanatory variables Xk that are linked to Xj within the graph. If relevant
two-factor interactions are identified it is straightforward to identify the correspond-
ing graphical model. However, starting from a two-factor interaction model has
the disadvantage that all higher interaction terms are neglected during the selection
procedure. It might be more appropriate to enforce sparse modelling by adminis-
ter stronger penalties on higher interaction terms or by strictly fitting hierarchical
models within a boosting procedure.

Example 1.4: Birth Data
Let us consider again the birth data (Example 1.3). Figure 1.5 shows the coefficient build-

ups for the fitting of a log-linear model with two-factor interactions where the two-factor
interactions are penalized. The coefficient build-ups show the parameter estimates for varying
degrees of smoothing λ; here they are plotted against ‖β‖. At the right end no penalty is
exerted and the model that contains all two-factor interactions is fitted. The drawn lines show
the two-factor interactions, the dashed lines represent the main effects. Since the main effects
are not penalized they remain rather stable. The vertical lines in Figure 1.5) show the models
that are selected by use of AIC and BIC . The stronger criterion, BIC, yields a model that
contains only the strong interactions MC, MI, CI (Figure 1.4). The graphical model that
contains these interactions is the same as found before, G/MC/MI/CI . If one uses AIC, in
addition the rather weak interaction GI has to be included. As was to be expected BIC yields
a sparser model.

Example 1.5: Leukoplakia
In Example 1.2 one wants to examine the association between occurrence of leukoplakia (L),
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FIGURE 1.5: Coefficient build-ups for log-linear model with two-factor interactions (birth
data)

alcohol intake in grams of alcohol (A) and smoking habits (S). Figure 1.6 shows the coef-
ficient build-ups for the penalized fitting of a log-linear model with two-factor interactions.
AIC as well as BIC (vertical line) suggest that the interaction between leucoplakia and alco-
hol intake is not needed. Leukoplakia and alcohol seem to be conditional independent given
smoking habits (see also Exercise 1.10).
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FIGURE 1.6: Coefficient build-ups for log-linear model with two-factor interactions, leu-
coplakia data, drawn lines show the two-factor interactions, dashed lines show the main
effects



1.10. FURTHER READING 33

1.10 Further Reading
Surveys on Log-linear and Graphical Models. An early summary of log-linear mod-
els was given by Bishop, Fienberg, and Holland (1975) , also available as Bishop,
Fienberg, and Holland (2007) . More on log-linear models is also found in Chris-
tensen (1997) . An applied treatment of graphical models is in the book of Whittaker
(2008) , a more mathematical treatment is found in Lauritzen (1996).

Model Selection. Selection among models by multiple test procedures was con-
sidered by Aitkin (1979) , Aitkin (1980) . Alternative strategies including screening
procedures were given by Brown (1976) , Benedetti and Brown (1978), Edwards
and Havranek (1987) .

Ordinal Association. Ordinal association models, which use assigned scores,
were considered by Goodman (1979), Haberman (1974), Goodman (1981), Good-
man (1983), Goodman (1985), Agresti and Kezouh (1983) . An overview was given
by Agresti (2009)

R packages. Log-linear models can be fitted by use of the R-function loglin from
package stats which applies an iterative-proportional-fitting algorithm. Function
loglm from package MASS provides a front-end to loglin, to allow log-linear models
to be specified and fitted in a manner similar to that of other fitting functions, such
as GLM.

1.11 Exercises

1.1 Consider the log-linear model for a (2× 2)-contingency tables table

log(µij) = λ0 + λA(i) + λB(j) + λAB(ij)

with multinomial distribution and appropriate constraints.

(a) Derive the parameters λA(i), λB(j), λAB(ij) as functions of odds and odds ratios for
symmetrical constraints and when the last category parameter is set to zero.

(b) Show that λAB(ij) = 0 is equivalent to the independence of the variables XA, XB ,
which generate the rows and columns.

1.2 Consider the log-linear model for a (2× 2)-contingency tables table

log(µij) = λ0 + λA(i) + λB(j) + λAB(ij)

which describes the distribution of product-multinomial sampling with fixed marginals xi..

(a) Specify appropriate constraints for the parameters.

(b) Show that λAB(ij) = 0 is equivalent to the homogeneity of response XA across levels
of XB .

1.3 Show that the log-linear model AB/AC in a multinomial distribution (I × J × K)-
contingency table is equivalent to assuming that the variables XA and XC are conditionally
independent given XC .
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1.4 Show that for the log-linear model AB/AC ML estimates of means are given by µ̂ijk =
xij+xi+k/xi++. Use the estimation equations that have to hold.

1.5 Find a set of probabilities {πijk} for three-way tables, where πijk = P (XA = i, XB =
j, XC = k), such that XA and XB are conditionally independent given XC = k but the
variables XA and XB are (marginally) dependent.

1.6 Compute the parameters of a three-way- contingency table as functions of the underlying
means {µijk} for symmetric side constraints.

1.7 Consider the log-linear models
AB/AC/AD/DE, ABC/BCD/BDE/CDE, AB/BCE/CDE/AE.
Are these models graphical? If they are draw the graph. If not give the smallest graphical

model that includes the corresponding model and draw the graph.

1.8

(a) Interpret the model AE/BC/CD/BD.

(b) Give all the independence relations that are implied by the model AB/BC/CD.

1.9 The contingency table 1.11 shows data from a survey on the reading behaviour of women
(Hamerle and Tutz (1980) ). The cells are determined by working (yes/no), age in categories,
education level (L1 to L4) and if the women is a regular reader of a specific journal. Find an
appropriate log-linear model for the data.

1.10 Fit log-linear models for the leucoplakia data (Table 1.2) and select an appropriate model
(compare to Example 1.5).

1.11 In contingency table 1.12 defendants in cases of multiple murders in Florida between
1976 and 1987 are classified with respect to death penalty, race of defendent and race of
victim (see Agresti (2002) , Radelet and Pierce (1991) ).

(a) Investigate the association between defendant’s race and death penalty when victim’s
race is ignored (from the marginal table).

(b) Investigate the association between defendant’s race and death penalty when victim’s
race is taken into account.

1.12 Consider the marginal association between binary factors XA and XB , measured in
odds ratios,

µ11+/µ12+

µ21+/µ22+
.

Show that the value is the same as for the conditional association between XA and XB given
XC = k,

µ11k/µ12k

µ21k/µ22k
.

1.13 Consider the saturated log-linear model for three variables X,XB , XC and multinomial
distribution. Derive the parameters of the logit model with with reference category (XA =
I, XB = J, XC = K). What constraints hold for the parameters?
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Regular Reader
yes no

Working(W) Age (A) Education (E)
Yes 18-29 L1 1 14

L2 32 49
L3 20 34
L4 8 3

30-39 L1 9 23
L2 31 57
L3 11 26
L4 5 7

40-49 L1 1 33
L2 12 50
L3 5 11
L4 1 7

No 18-29 L1 3 24
L2 12 41
L3 19 20
L4 14 13

30-39 L1 1 37
L2 12 68
L3 14 43
L4 4 7

40-49 L1 11 54
L2 14 53
L3 8 15
L4 1 3

TABLE 1.11: Regular Reader of women’s journal with employment, age, education

Victims’s Defendant’s Death Penalty
Race Race Yes No
White White 53 414

Black 11 37
Black White 0 16

Black 4 139

TABLE 1.12: Death Penalty Verdict by Defendant’s Race and Victim’s Race
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